12M CO5 L3

Q.P. Code: 2212101

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular / Supple. Examinations of March – 2023 SUB: Advanced Soil Mechanics (GTE)

		BOB. Advanced Bon Meetines (G12)			
	Tim	ne: 3 Hours Max	. Mark	s: 60	
	t.				
		Answer any FIVE Questions choosing one question from each uni All questions carry Equal Marks.			
		X	M	СО	\mathbf{BL}
		UNIT - I	IVI	CO	ענע
1	(0)	Explain in detail, how to determine the coefficient of consolidation by square	6M	CO1	L2
1.	(a)	root of time fitting method.			
	(b)	A clay layer 4 m thick is subjected to a pressure of 55 kN/m ² . If the layer has a	6M	CO1	L5
	(2)	double drainage and undergoes 50 % consolidation in one year, determine the			
		coefficient of consolidation. Take $T_v = 0.196$. If the coefficient of permeability			
		is 0.020 m/yr, determine the settlement in one year.			
		(OR)	C2 /	GO1	Υn
2.	(a)	State the assumptions and their validity of the Terzaghi's consolidation theory.	6M	CO1	L3 L4
	(b)	The time to reach 60% consolidation is 30 sec for a sample of 1 cm thick, tested	6M	COI	1.4
		in the laboratory under condition of double drainage. How many years will the			
		corresponding layer in nature require to reach the same degree of saturation if it is 10 m thick and drained on one side only?			
		UNIT – II			
3.	(a)	Explain the Mohr-coulomb failure criterion.	6M	CO2	L2
٠,	(b)	Two identical soil specimens were tested in a tri-axial apparatus. First specimen	6M	CO ₂	L3
	(~)	failed at a deviator stress of 770 kN/m ² when the cell pressure was 200 kN/m ² .			
		Second specimen failed at a deviator stress of 1370 kN/m ² under a cell pressure			ų
		of 400 kN/m ² . Determine the value of c and Ø analytically. If the same soil is			
		tested in a direct shear apparatus with a normal stress of 600 kN/m ² . Estimate			
	•	the shear stress at failure.			
	(-)	(OR) What is the effect of pore pressure in strength of soils?	6M	CO2	L2
4.	(a)	The following results were obtained from undrained shear box tests on samples	6M	CO ₂	L5
	(b)	of silty clay:			
		Normal pressure (kN/m²) 60 100 135			
	•	Shear stress (kN/m ² 30 36 41			
		Determine the cohesion and angle of shearing resistance.			
		UNIT – III			
5.		Describe the Lambe's stress path.	12M	CO3	L2
•		(OR)			
6.		Discuss the different practical situations of the stress path.	12M	CO3	L6
		UNIT – IV	107/	CO4	тo
7.		Define critical void ratio. Explain the shear behavior of a soil whose void ratio	12M	CO4	L2
		is lesser than the critical void ratio.			
^	, .	(OR)	6M	CO4	L1
8.	(a)	Explain the critical state parameters. Describe the different dilation models.	6M	CO4	L4
	(b)	UNIT-V			
9.		Write a short note on: (i) Elastic wall (ii) Yield curve	12M	CO5	L2
		(0.7)			

(OR)

Discuss the flow rules of non-associated to elastic and plastic deformations.

10.

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular / Supple. Examinations of March – 2023 SUB: Advanced Foundation Engineering (GTE)

Wax. Marks: 60	Time: 3 Hours	·	-	Max. Mar-ks: 60
----------------	---------------	---	---	-----------------

Answer any FIVE Questions choosing one question from each unit.

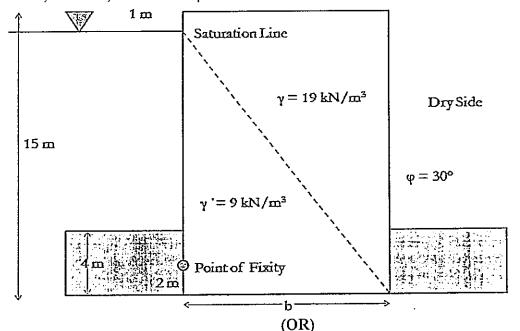
All questions carry Equal Marks.

			M	CO	BL
1	(2)	UNIT - I			
1.	(a)	Investigation?	6M	CO1	L1
	(b)	(OR)	6M	CO1	L2
2.	(a)	Describe various methods of Sub soil Exploration and explain open excavation method of sub soil exploration	6M	CO1	L2
	(b)	With the help of neat sketch explain Wash boring method of drilling bore hole UNIT – II	6M	CO1	L2
3.	(a)	What are the Requirements for Satisfactory Performance of Foundations	6M	CO2	L2
	(b)	A column carries a load of 1000KN. The soil is dry sand weighing $19kN/m3$ and having an angle of internal friction of 400. Aminimum factor of safety of 2.5 is required and Terzaghi's bearing capacity factors are $N\gamma=42$, $Nq=21$. Find the size of a square footing, if placed at the ground surface.	6M	CO2	L3
4.	(a)	(OR) What are different types of raft foundations? Write a note on allowable	6114	CO2	Υd
	` ,	settlement of structures on individual footings and Raft foundations	6M	CO2	L1
	(b)	Discuss the procedure for the design of a raft foundation UNIT – III	6M	CO2	L3
5.	(a)	What are the various methods of Estimating Load Transfer of Piles? Explain how can you estimate load carrying capacity of a pile by using Pile load test	6M	CO3	L3
	(b)	A square group of 9 piles was driven into soft clay extending to a large depth. The dieter and length of piles were 30cm and 9m respectively. If the unconfined compressive strength of clay is 9 t/m² and pile spacing is 90cm c/c. What is the capacity of group? Assume a factor of safety of 2.50 and adhesion factor of 0.75.	6M	CO3	L3
_		(OR)			
6.	(a)	What is 'negative skin friction' on pile and why does it cause concern Suggest means of controlling it.	6M	CO3	L2
	(b)	A 500 m diameter concrete pile is to be driven in a clay soil. The design capacity of the pile is 500 KN. The soil has unconfined compressive strength of 115 KN/m^2 and $\gamma=18.1 \text{KN/m}^3$. Assume adhesion factor $\alpha=0.75$. Find the length of the pile for the above design capacity. UNIT – IV	6M	CO3	L3
7.	(a)	Discuss the situations where a well foundation is more suitable than the other types of foundations	6M	CO4	L2
		A well foundation has the following particulars: Outer diameter=5.0m, Inner diameter=3.0m, Depth below the scour Level=12.0m, Moment=5000 kN-m, Horizontal force acting at 8m above the scour level=600Kn, Factor of Safety=2.0, Assuming that the well tilts about a certain point above the base compute the allowable total equivalent resisting force due to earth pressure. Take γsat=20kN/m³ φ=30°.	6M	CO4	L3

- 8. (a) Discuss various methods of for the design of well foundations. What are their 6M relative merits
 - er 4 m is sunk to 6M CO4 L3

CO4

CO₅


1,2

1,4

(b) A cylindrical well of external diameter 6 m and internal diameter 4 m is sunk to a depth 16 m below the maximum scour level in a sand deposit. The well is subjected to a horizontal force of 1000 kN acting at a height of 8 m above the scour level. Determine the total allowable equivalent resisting force due to earth pressure, assuming that (a) the well rotates about a point above the base, and (b) the well rotates about the base. Assume $\gamma' = 10 \text{ kN/m}^3$, $\varphi = 30^\circ$, and factor of safety against passive resistance = 2. Use Terzaghi's Approach.

UNIT-V

Design a circular cellular coffer dam of total height 15 m resting on rock as shown in Figure 02. Take allowable interlock tension of 1500 kN/m, $\phi = 30^{\circ}$, $\delta = 25^{\circ}$, K = 0.60, f = 0.30 and γ sat = 10 kN/m³.

- 10. (a) Compare diaphragm cellular coffer dam and circular cellular coffer dam
 - (b) What are causes of failure of a Coffer Dam

6M CO5 L4 6M CO5 L2

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular Examinations of March/April – 2023 SUB: Ground Improvement Techniques (GTE)

Time: 3 Hours

Max. Marks: 60

		Marks	СО	BL
	UNIT - I			
1.	What is preloading? Discuss the principle and installation of preloading and wick drains to accelerate the consolidation in soft clay.	12M	CO 1,3	L1
	(OR)	12M	CO	L1
2.	Explain how deep layer of cohesionless soil is densified by the vibroflotation? Discuss the benefits and limitations of this Vibroflotation method.	12141	2,3	2,
	$\mathbf{UNIT} - \mathbf{II}$	1034	co	L2
3.	When do you prefer chemical treatment of ground? Discuss how you improve cohesive soil with the industrial by product fly ash?	12M	2,3	114
	(OR)	12M	CO2	L2
4.	What are the characteristics of grout materials? Explain jet grouting method with its advantages and limitations.	12141	COZ	112
	UNIT – III	12M	CO	L3
5.	Why soils experience freezing and thawing? Discuss the associated effects due to thawing and freezing.	12171	1,3	
	(OR)	12M	co	L3
6.	Explain how you modify the ground which is subjected to freezing and thawing? Discuss the drawbacks of thermal modification of ground.	12141	2,3	20
	IINIT – IV	12M	co	L4
7.	What is the role of reinforcement in ground modification? Discuss how you improve desired properties of a soil with the the inclusion of geotextiles to the soil.	12,11	2,3	
	(OR)			Ŧ 4
8.	What is soil nailing? Discuss how you install soil nailing? Also write the various advantages and drawbacks of the soil nailing process.	12M	CO4	L4
	INIT-V	1034	co	L5
9.	Compute the pullout capacity of the following reinforcing elements buried in a horizontal position at a depth of 8 m in sand having $\gamma = 18 \text{ kN/m}^3$, c = 0 and $\phi = 30^\circ$. For soil metal take tan $\delta = 0.7$ tan ϕ whereas for soil grou and soil Geotextile take tan $\delta = \tan \phi$, (i) a steel strip of width 100 mm, (ii) a driven soil nail in a hole of diameter 150 mm, and unit width of Geotextile sheet of length 5 m.	t a	4	LS
10.	Elaborate on analysis and design of shallow foundations constructed on reinforced earth beds.	12M	CO 3	L5

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular End Examinations of March/April-2023 SUB: Pavement Analysis and Design (GTE)

Time: 3 Hours Max. Marks: 60

			Marks	CO	\mathbf{BL}
		UNIT - I			
1.		How would you show your understanding of Performance of Airport Pavements? (OR)	12M	CO1	L3
2.		What are the factors affecting the Pavement design? Explain in detail? UNIT $-$ II	12M	CO1	L5
3.	(a)	Would you explain about Burmister's two layer system with the help of diagram?	6M	CO2	L5
	(b)	Would you discuss the vertical stress distribution under the pavement? (OR)	6M	CO2	L5
4.	(a)	Sketch the structure of a flexible pavement. The analysis of sub-grade soil of a proposed highway gives the following data: Passing No.200 in ASTM 15 microns sieve is 60% Liquid limit 45% and plastic limit 25% Daily traffic intensity 1000 heavy vehicles per day. List the design procedure for a suitable flexible pavement.	6M	CO2	L5
	(b)	Would explain the concept of Equivalent single wheel load of multiple wheels with the help of diagram.	6M	CO2	L5
		UNIT – III			
5.	(a)	What are the different types of stresses that are to be considered in flexible pavement design?	6M	CO3	L4
	(b)	Can you list out the advantages and limitations of Empirical and mechanistic empirical design methods for flexible pavement design? (OR)	6M `	CO3	L4
6.	(a)	Would you explain the brief concepts of layered system in flexible pavements?	6M	CO3	L5
	(b)	Can you identify the design factors considered in Flexible Pavement deisgn as per IRC Guidelines?	` 6M	CO3	L5
		UNIT-IV		~~ .	- .
7.		Discuss Westergaard's concept of temperature stresses in concrete pavements. Find the spacing between contraction joints for a 3.75 m slab width having a thickness of 25 cm for Reinforces cement concrete slab. Take allowable tensile stress values in concrete and steel are 0.80 and 1400 kg/cm2, coefficient of friction is 1.50.	12M	CO4	L4
0		(OR)	CTV/F	CO4	ΥΛ
8.	(a) (b)	Can you explain the warping & frictional stresses in rigid pavements? Can you list the various considerations in rigid pavement analysis? UNIT-V	6M 6M	CO4 CO4	L4 L4
9.		Estimate the thickness of cement concrete pavement using the method suggested by IRC (old method) and take the following data: modulus of elasticity of concrete = 3×105 kg/cm2, modulus of rupture of concrete =45 kg/cm2, Poisson's ratio of concrete =0.15, modulus of sub-grade reaction =6.5 kg/cm3, design wheel load = 5100 kg and radius of contact area = 16cm (OR)	12M	CO5	L5
10.	(a)	Can you explain the design of cement concrete pavement for runways?	6M	CO5	L4
LU.	(b)	Would you explain the design of continuously reinforced concrete pavements?	6M	CO5	L4

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular / Supple. Examinations of March – 2023 SUB: Advanced Power System Protection (PS)

Time: 3 Hours Max. Marks: 60

			M	co	BL
		UNIT - I			
1.	(a)	Discuss the purpose of back up protection.	6M	CO1	L3
	(b)	Mention the merits and demerits of static relays in power system protection	6M	CO1	L3
		(OR)			
2.	(a)	What are the advantages and disadvantages of static relays?	6M	CO1	L4
	(b)	Explain how an Instrument Transformers can be used for the protection	6M	C01	L4
		purpose. UNIT – II			
3.	(a)	Illustrate least squares method for curve fitting in detail with necessary	6M	CO2	L5
J.	(a)	diagrams and derivations.	OIT	CO2	,,,,
	(b)	Explain the concept of Finite Difference Techniques	6M	CO2	L4
	(-)	(OR)			
4.	(a)	Explain in detail of Walsh Function Analysis.	6M	CO2	L4
	(b)	Explain in detail of backward interpolation formulas.	6M	CO2	L4
		UNIT – III			
5.	(a)	Write short notes on Surge Protection and Analog Filtering	6M	CO3	L3
	(b)	Explain in details of Digital Relay as a Unit Consisting of Hardware and Software.	6M	CO3	L4 .
		(OR)			
6.	(a)	What is Signal Aliasing Error and Multiplexers	6M	CO3	L3
0.	(b)	Write short notes on the Sample and Hold Circuits	6M	CO3	L3
	(5)	UNIT – IV		-	
7.	(a)	Discuss Fractional Cycle Window algorithm.	6M	CO4	L3
	(b)	Explain the First Derivative (Mann and Morrison) algorithm	6M	CO4	L4
	` '	(OR)			
8.	(a)	Explain Walsh Function Based Algorithm	6M	CO4	L4
	(b)	Discuss Differential Equation Based Algorithms	6M	CO4	L3
		UNIT-V			
9.	(a)	Discuss in detail about recent advances in digital protection of power systems	6M	CO5	L5
	(b)	Classify the types of differential protection?	6M	CO5	L3
		(OR)			
10.		Explain Digital Differential Protection of Transformers using harmonic	12M	CO5	L4
		filtering algorithms-based restraint conditions.			

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular / Supple. Examinations of March - 2023 SUB: Power System Dynamics – I (PS)

Time: 3 Hours

Max. Marks: 60

Answer any FIVE Questions choosing one question from each unit.

All questions carry Equal Marks.

		M	CO	BL
1.	Write and Explain the mathematical modelling Equations of Synchronous machine	12M	CO1	L2
	machine		CO1	
2.	(OR) Explain the performance of a synchronous machine under steady state conditions by applying per unit quantities.	12M	CO1	L2
3.	UNIT - II Discuss about Steady state equivalent circuit with relevant equations?	12M	CO2	L1
4.	(OR) Formulate the state space model for synchronous machine.	12M	CO2	L1
5.	UNIT – III Explain about the parameters Sub transient and Transient inductances I the model of a Synchronous motor?	12M	CO3	L3
6.	(OR) Obtain the simplified model of a synchronous machine with necessary equations.	12M	CO3	L3
7.	UNIT – IV .Explain about different Excitation systems and its effects on Synchronous machine performance?	12M	CO4	L3
	· · · · · · · · · · · · · · · · · · ·			
8.	(OR) Obtain the state space model of rotating rectifier system.	12M	CO4	L1
9.	UNIT-V Explain about Steady state equivalent circuits of the mathematical model of an Induction motor?	12M	CO5	L1
	(OR)		~~=	τ ο
10.	Discuss about the modelling of a Prime mover?	12M	CO5	L2

SET - 1

Q.P. Code: 2252103

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular End Examinations of March/April- 2023

SUB: Energy Conversion Systems (PS)

Time: 3 Hours

Max. Marks: =60

		im quotata v	Marks	CO	\mathbf{BL}
		UNIT - I Name the renewable energy sources and explain them in brief	6M	CO1	L2
1.		What is the status of non-conventional energy sources in India, and what	6M	CO1	L3
	(b)	are their future prospect?			
		Discuss the impact of various conventional sources of energy on the	12M	CO1	L4
2		environment and suggest remedial measures.			
		UNII – II	6M	CO2	L4
3.	(a)	Explain the construction and working of a solar cell.	6M	CO2	L3
	(b)	What are the main advantages of flat plate solar collector? Explain in detail.			
		(OR) How the solar radiation data is collected and what way it is helpful in solar	6M	CO2	L2
4.	(a)		6M	CO2	L3
	(b)	What is solar power? Discuss the various environmental impact of solar	OIAT	202	
	•	power system on environment? UNIT – III			
_		Classify Wind Energy conversion systems and list out their advantages and	12M	CO3	L2
5.		disadvantages.			
		(OR)	6M	CO3	L2
6.	(a)	Discuss in detail the operation and control of a wind turbines which are used in wind energy system?		CO3	L2
	(b)	Explain how the variations of wind velocity and its directions are taken out of	6M	COS	1.2
	()	Wind energy systems? UNIT – IV			
-	(-)	disadvantages of Geo-thermal energy?	6M	CO4	
7.	(a) (b)	s to the second of the second	6M	CO4	L3
	(0,	(OR)	r 6M	CO4	L3
8.		What is geothermal energy? How can geothermal energy are utilized fo	L OIM	CO	
		electric power Generation? UNIT-V			
•	(-	Callel nervor congration?	6 M	COS	5 L3
9.	(a		6M	CO:	5 L4
	(b	Explain the various components of tidal power plants with neat sketch.	OIAT	ÇO.	,,
	•	(OR)	6M	CO	5 L2
10). (a	What are the main hurdles in the way of common use of fuel cell?	6M		5 L4
	(l	Describe the classification of the fuel cells.			

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular End Examinations of March/April-2023 SUB: Electrical Distribution Systems (PS)

Time: 3 Hours

Max. Marks: = 60

			Marks	CO	$\mathbf{B}\mathbf{L}$
		UNIT - I			
1.		Describe various load forecasting Techniques in Power systems.	12M	CO1	L2
		(OR)			
2.		Explain about Distributed energy supply system & technological forecasting.	12M	CO1	L2
		UNIT – II			
3.		Explain with suitable block diagram Distribution automation and its control function.	12M	CO2	L2
		(OR)			
4.		Discuss about the communication requirements for distribution automation.	12M	CO2	L3
		UNIT – III			
5.		With a neat block diagram, explain the components and its function of	12M	CO3	L2
		SCADA.			
		(OR)	. 1274	CO2	L2
6.		Explain the various DA integration mechanisms.	12M	CO3	1.4
		UNIT – IV			
7.		Discuss various communication methods used for Automated Meter Reading System?	12M	CO4	L2
		(OR)	•		
8.		Explain optimal switching device placement in radial distribution system.	12M	CO4	L5
٠.		UNIT-V	•		
9.		Discuss about implementation of genetic algorithm for distributed automation?	12M	CO4	L3
		(OR)			
10.	(a)	What is the need of demand side management.	6M	CO4	L1
	(b)	What are the benefits of Demand Side Management.	6M	CO4	L3

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA

M. Tech. I Semester (R22PG) Regular / Supple. Examinations of March – 2023

SUB: Advanced Thermodynamics and Fluid Mechanics (RE)

Time: 3 Hours

Max. Marks: 60

			M	CO	BL
		UNIT - I			
1.	(a)	Establish the inequality of Clausius.	6M	CO1	L6
1.		Air flows through an adiabatic compressor at 2 kg/sec. The inlet conditions	6M	CO1	L5
	(b)	are 1 bar and 313 K and the exit conditions are 7 bar and 56 ⁰ K. Compute			
		the net rate of availability transfer and the irreversibility. Temperature of			
		surroundings= 298 K.			
		(OR) Using Clausius-Clanevron's equation, estimate the enthalpy of	6M	CO1	L5
2.	(a)	Oshig Chausius Chapoyron b education, observed	OIVA	COI	,,,,
		vaporization. The following data is given:			
		At 2000C: $v_g=0.1274 \text{ m}^3/\text{kg}$; $v_f=0.001157 \text{ m}3/\text{kg}$; $(dp/dT)=32 \text{ kPa/K}$.	CB 15	CO1	Υſ
	(b)	Explain Maxwell relations.	6M	CO1	L2
		UNIT – II	403.5	000	10
3.		Explain conditions for equilibrium and types of equilibrium.	12M	CO ₂	L2
		(OR)			T 0
4.		What do you understand by first -law analysis of reacting systems? Explain	12M	CO ₂	L2
		in detail.			
		$\mathbf{UNIT} - \mathbf{III}$			
5.		Water is flowing through 200 mm dia pipe with a coefficient of friction as	12M	CO3	L5
-		0.06. The shear stress at a point 45 mm from the pipe wall is 0.02 N/cm ² .			
		Calculate the shear stress at the pipe wall.			
		(OR)			
6.		State and explain velocity potential function and stream function?	12M	CO3	L2
0.		UNIT - IV			
7.		Derive the Poiseuille's formula express the disharged streamlined volume	12M	CO4	L4
7.		flow through a smooth-walled circular pipe.			
		(OR)			
•		Write in detail about hydro dynamically smooth and rough boundaries?	12M	CO4	L1
8.		UNIT-V			
_			12M	CO5	L4
9.		Derive the expression for Bernoulli's equation for compressible flow	1		
		undergoing Adiabatic Process.			
		(OR)	12M	CO5	L2
10.	,	Explain the fluid flow through variable area passage nozzles and diffusers.	14111	000	

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular / Supple. Examinations of March – 2023 SUB: Introduction to Renewable Energy Systems (RE)

Time: 3 Hours

Max. Marks: 60

			M	СО	BL
		UNIT - I		201	T 1
1.		Discuss renewable and non-renewable forms of energy. And write their	12M	CO1	L1
		merits and demerits			
		(OR)	5M	CO1	L1
2.	(a)	Explain about Direct and Indirect radiation. What are the various types of solar radiation measurement instruments?	7M	CO1	L1
	(b)	explain			
		UNIT – II			
3.	(a)	Classify solar thermal power plant and discuss about low temperature solar	6M	CO2	L2
	(-)	power plant with neat sketch.	CNA	CO2	L2
	(b)	Explain solar kilns with neat sketch	6M	COZ	بكنية
		(OR) Compile the meteorological data of wind speeds in India and classify the	6M	CO2	L2
4.	(a)	sites into fair, good and excellent wind energy potential sites.			
	(b)	What is grid interfacing and how can the grid connection be made?	6M	CO2	L2
	(b)	UNIT – III			
5.	(a)	Discuss the process of production of ethanol from biomass	6M	CO3	L2
	(b)	What do you mean by biogas? Write a note on producer gas and liquid fuel.	6M	CO3	L1
		(OR)	6M	CO3	L2
6.	(a)	Classify the resources of geothermal energy. Briefly explain each of them	6M	CO3	L2
	(b)	Explain about utilization of geothermal energy UNIT – IV			
77	(0)	List out major components used in hydroelectric power generation. And	8M	CO4	L2
7.	(a)	explain with neat sketch.			
	(b)	Distinguish between reaction and impulse turbine	4M	CO4	L2
	()	(OR)	ONA	CO4	L1
8.	(a)	Discuss closed rankine cycle of OTEC system with schematic diagram.	8M 4M	CO4	L2
	(b)	Calculate the efficiency of closed rankine cycle of OTEC system. UNIT-V	41.1		
		How do you find energy output of a fuel cell?	8M	CO5	L2
9.	(a)	Write advantages of fuel cell power plant	4M	CO5	L1
	(b)	(OR)			
10.	(a)	Explain how hydrogen is a more versatile fuel? And write applications of	6M	CO5	L2
	` ,	hydrogen energy system.	6M	CO5	L2
	(b)	Discuss various methods of hydrogen storage?	OIAY	203	بدرو

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular End Examinations of March/April-2023 SUB: Wind Energy Technologies (RE)

Time: 3 Hours

Max. Marks: = 60

			Marks	CO	BL
		UNIT - I		501	DY 1
1.	(a)	Is wind energy a better alternative source of energy for Indian demand?	6 M	CO1	BL1
1.	(b)	Explain in detail how wind energy is produced. Explain in detail about the performance and efficiency of different types of	6 M	CO1	BL2
	(-)	wind mills.			
		(OR)	6M	CO1	BL2
2.	(a)	Discuss briefly about a) Performance of wind mills b) Wind power	V		
	(b)	generation in India. Compare the performance of horizontal and vertical axis wind mills.	6M	CO1	BL2
	(-)	$UNF\Gamma - \Pi$	6M	CO2	BL3
3.	(a)	Have there been successful lawsuits related to the health impacts of wind	0147	002	220
		farms?	6M	CO ₂	BL1
	(b)	How do wind farms impact wildlife? (OR)			
		Wilest are the economic benefits from wind farm construction?	6M		BL1
4.	(a)	What is the expected lifespan of a wind turbine, and how is it	6M	CO2	BL1
	(b)	decommissioned?			
		UNIT – III	1034	CO2	BL2
5.	Ext	lain the Grid Tied Inverter, Power Management, Grid Monitoring Unit with	12M	CO3	DL2
٠.	nea	t sketch ?			
		(OR)	12M	CO3	BL2
6.	(a)	Derive the expression for Circumferential and Axial Thrust Force.	124111	000	
		UNIT – IV	6M	CO4	BL2
7.	(a)	Is wind energy a better alternative source of energy for Indian demand?			
	~ \	Explain in detail how wind energy is produced. How wind energy conversion systems are classified? Discuss in brief. What	6M	CO4	BL2
	(b)	are its advantages and disadvantages?			
		(OR)		~~	D7.6
8.	Ev	plain the condition for maximum power generation in wind conversion	12M	CO4	BL2
0.		stem.			
	-,-	UNIT-V	6M	CO	BL1
9.	(a)	What is the origin of wind and what are the various factors which govern	0141	CO.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		wind energy and direction?	6M	CO:	5 BL2
	(b)	Describe the savonious type of rotor in wind mill. (OR)			
4 ^	,		s 12M	CO	5 BL2
10.	. (a	data base?			

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular End Examinations of March/April-2023 SUB: Energy Storage Technology (RE)

Time: 3 Hours

Max. Marks: = 60

		Marks	CO	\mathbf{BL}
	UNIT - I			
1.	Why is energy storage important? Energy storage system roadmap for India 2019-32.	12M	CO1	L2
	(OR)			
2.	Briefly explain different types of energy storage systems.	12M	CO1	L2
	UNIT – II			
3.	What are the different methods of thermal energy storage and write down the thermal energy storage applications	12M	CO2	L2
	(OR)			
4.	Explain the following mechanical energy storage systems.	12M	CO2	L3
	a) Flywheel storage			
	b) Compressed air storage.	•		
5.	UNIT – III	403.4	~~~	
٥.	What are the three types of electrochemical energy systems? Describe in detail.	.12M	CO3	L2
	(OR)			
6.	What is electrochemical energy storage system? What is electrochemical energy	12M	CO3	L2
	storage system? Are electrochemical batteries sustainable?			
	UNIT - IV	•		
7.	How is hydrogen used as a fuel resource? What are the 4 basic methods of	11257	CO4	L3
	producing hydrogen?	121/1	CU4	L3
	(OR)			•
8.	What is the principle of direct energy conversion system in fuel cells?	12M	CO4	L2
	UNIT-V			~
9.	Explain about Fuel cell, its principle of operation and advantages of it?	12M	CO5	L3
	(OR)			
10.	What is green house heating system? Explain the different types of heating	12M	CO5	L2
	systems used in a greenhouse?			

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular / Supple. Examinations of March – 2023 SUB: RTL Simulation and Synthesis with PLDs (ES&VLSI)

Time: 3 Hours Max. Marks: 60

		• • •	M	CO.	BL
		TINITED T	177	CO,	~
		UNIT - I	6M	CO1	L2
1.	(a)	Explain briefly about continuous and implicit continuous assignment	UIIA	002	
	<i>a</i> >	operation with suitable examples.	6M	C01	L2
	(b)	Describe about function and tasks in Verilog HDL. (OR)			
_			6M	CO1	L2
2.	(a)	Explain the concept of gate delays in Verilog with example.	6M	CO1	L2
	(b)	Discuss the control and repetition statements in HDL. UNIT – II	•=		
			12M	CO2	L5
3.		Implement the sequence detector using FSM. (OR)			
	(.)	Design of 4-bit BCD Adder.	6M	CO2	L5
4.	(a)	Draw a Mealy state machine having single input X and single output Z, the	6M	CO2	L 4
	(b)	output is asserted after each four bit input sequence if it consists of one of the			
		binary string "0110" or "1010". The machine returns to the reset state after			
		each four bit sequence.			
		UNIT – III			
5.		Illustrate the design flow of ASIC with a neat diagram.	12M	CO3	L2
J.		(OR)			
6.		Write a brief note on the following	12M	CO3	L2
0.		i) Floor planning ii) Placement iii) Routing			
		UNIT – IV			
7.	(a)	Discuss the design strategies for multi-clock domain designs.	6M	CO4	L2
, -	(b)	Give the steps to remove setup and hold time violations.	6M	CO4	L3
	(~)	(OR)			
8.		Explain about Meta-stability and Clock issues.	12M	CO4	L2
		UNIT-V			
9.	(a)	Write a short note on CPLD. How are they different from FPGA?	6M	CO5	
	(b)	DOMESTA IDAT	6M	CO5	L4
	(-)	(OR)			
10.	(a)	With a neat block diagram, explain PLA.	6M	C05	
	(b)	TROCA and explain how a logic circuit can	6M	CO5	L2
	. ,	be realized on FPGA taking a suitable example.			

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA
M. Tech. I Semester (R22PG) Regular / Supple. Examinations of March – 2023

SUB: Microcontrollers and Programmable Digital Signal Processors (ES&VLSI)

Time: 3 Hours

Max. Marks: 60

			M	СО	BL
		UNIT - I			
1.	(a)	Explain ARM Cortex-M3 Processor Applications.	6M	CO1	L2
	(b)	State and explain different operating modes of ARM Cortex-M3 processor. (OR)	6M	. CO1	L2
2.	(a)	Explain Pipeline mechanism in Cortex-M3 Processor.	6M	CO1	L2
	(b)	Explain about Exceptions and Interrupts in Cortex-M3 Processor.	6M	CO1	L2
	` ,	UNIT – II			
3.	(a)	Explain with neat diagram the nested vector interrupt controller and its operation with entry and exit.	6M	CO2	L2
	(b)	Discuss Various faults can be caused by exception handling.	6M	CO2	L6
	(~)	(OR)			
4.	(a)	Explain the various Fault Exceptions occur in Cortex M3 Processor.	6M	CO2	L2
	(b)	Discuss the various blocks of ARM Cortex-M3 based controller.	6M	CO ₂	L6
	• /	UNIT – III			
5.	(a)	Briefly describe SYSTICK Timer and its usages.	6M	CO3	L5
	(b) Describe the Features of WDT in LPC 17XX Microcontroller.		6M	CO3	
		(OR)			
6.	(a)	Describe the Features and benefits of LPC 17XX Microcontroller.	6M	CO3	L3
	(b)	Describe the Features and Functionalities of LPC 17XX general purpose	6M	CO3	L3
		parallel I/O (GPIO).		•	
		UNIT – IV			
7.	(a)	Explain the MAC unit of Programmable DSP Processors.	6M	CO4	L2
	(b)	Briefly describe the Multi-port memory of Programmable DSP Processors.	6M	CO4	L3
		(OR)			~ ~
8.	(a)	Describe the Harvard architecture of Programmable DSP Processors.	6M		L3
	(b)	Explain the architectural differences between DSP processors and	6M	CO4	L2
		Microprocessors.			
		UNIT-V	CB 15	CO.5	T 1
9.	(a)	List the on-chip peripherals of DSP TMS320C6000 processor.	6M	CO5	Li
	(b)	Describe the advantages and disadvantages of VLIW architecture.	6M	CO5	L6
		(OR)	CN/I	CO5	L2
10.	(a)	Explain what is meant by instruction pipelining. How pipelining increases the	6M	CO5	L4
	(7. \	throughput efficiency.	6M	CO5	L2
	(b)	Explain the logical operations Code Composer Studio for application development of digital signal processing.	0111	005	سديد

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular End Examinations of March/April-2023 SUB: Design for Testability (ES&VLSI)

Time: 3 Hours

Max. Marks: =60

			Marks	CO	\mathbf{BL}
		UNIT - I			
1.	(a)	Define Simulation and describe different types of Simulation.	6M	CO1	L1
1.	(a) (b)	Explain various methods of detecting hazards in vlsi chips?	6M	CO1	L2
	(0)	(OR)		601	L 6
2.	(a)	Discuss what are the types of tests VLSI chips are subjected to?	6M	CO1 CO1	L2
	(b)	Explain, with a block diagram, simulation for design verification.	6M	COI	1-4
	(-)	UNIT – H	6M	CO2	L2
3.	(a)	How the effect of a fault is represented by means of a model? Explain	OIAT	COZ	
	` .	multiple stuck-at fault model with example.			
		a second street and the second of the second	6M	CO2	L2
	(b)	Illustrate the single stuck-at faults of combinational circuits with example?	OIVE	••-	_
		(OR)	6M	CO2	L6
4.	(a)	Discuss about Digital and analog VLSI testing.	6M	CO2	L1
	(b)	Describe various levels of Fault models. UNIT – III			
_		How the path sensitization method is used to generate a test pattern for	6M	CO3	L1
5.	(a)	combinational circuits?			
	a.v	Draw a modulo-3 circuit diagram illustrating scan design and test	6M	CO ₃	L2
	(b)	generation and also explain its working.			
		(OR)			. .
6.	(a)	Explain concept of ATG in combinational circuit using fan out free circuit.	6M	CO3	L2
U.	(b)	Explain vector simulation, vector compaction and compression in detail.	6M	CO3	L2
	(6)	UNIT – IV	C 3. 17	CO4	L2
7.	(a)	Explain the test procedure for syndrome-testable circuit with suitable block	6M	CO4	LE
•••	` '	diagram.	6M	CO4	L2
	(b)	Explain the Boundary Scan standards.	OIAT	COT	
		(OR)	6M	CO4	L1
8.	(a)	What are the properties of a testable circuit?		CO4	
	(b)	How the control logic can be used to increase the observability and	, QIA		
		controllability? UNIT-V			
			6M	CO5	L2
9.	(a)	Explain why BIST is the preferred form of DFT?			
		Draw the block diagram for a BIST implementation using BILBO and	i 6M	CO5	L2
	(b)	explain the test procedure.			
		explain the lest procedure. (OR)			
4 11		Explain the tradeoff between ATEs and BIST.	12M	COS	5 L5
10	•	Explain the tradeox seemen and the s			

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular End Examinations of March/April-2023 SUB: CPLD, FPGA Architectures and Applications (ES&VLSI)

Time: 3 Hours

Max. Marks: = 60

			Marks	CO	BL
		UNIT - I			
1.	(a)	Explain about PROM.	6M	CO1	L2
	(b)	Explain about Sequential Programmable Logic Devices (SPLDs).	6 M	CO1	L2
		(OR)			
2.		Explain design flow using FPGA by using flowchart.	12M	CO1	L2
,		$\mathbf{UNIT}-\mathbf{II}$			
3.	(a)	Discuss Actel FPGAs clearly.	6M	CO3	L2
	(b)	Explain about AMD FPGAs.	6M	CO3	L2
		(OR)			
4.	(a)	Explain about XILINX SPARTAN II.	8M	CO3	L2
	(b)	Write the features of XILINX SPARTAN II.	4M	CO3	L1
		UNIT – III			
5.		Explain Cypres flash 370 device technology, lattice PLSI's architectures in CPLDs.	12M	CO2	L2
		(OR)			
6.		Explain the max 7000 series CPLD's clearly.	12M	CO2	L2
		UNIT – IV			
7.	(a)	Explain Min cut-Based placement.	⋅ 6M	CO4	L2
	(b)	Write about computing signal delay in RC tree networks.	6M	CO4	L1
		(OR)			
8.		Explain about iterative improvement placement clearly.	12M	CO4	L2
		UNIT-V			
9.		Analyze the testing concepts, failure mechanisms and faults, fault coverage.	12M	CO5	L4
		(OR)			
10.	(a)	List ATPG methods.	2M	CO5	L1
	(b)	Explain the ATPG methods clearly.	10M	CO5	L2

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular / Supple. Examinations of March – 2023 SUB: Machine Learning (AI&DS)

Time: 3 Hours

Max. Marks: 60

Answer any FIVE Questions choosing one question from each unit.

All questions carry Equal Marks.

		1			
			M	CO	BL
		UNIT - I			
1.	(a)	Explain with examples why machine learning is important.	6M	CO1	L2
	(b)	How can you choose the Training Experience, Target function, and Function approximation algorithm in designing a learning system?	6M	CO1	L1
		(OR)	6M	CO1	L3
2.	(a)	Identify the three features for a well-posed learning problem.	6M	CO1	L2
	(b)	Compare Supervised and Unsupervised Learning.	OIVA	001	
		UNIT – II	6M	CO2	L 4
3.	(a)	Discuss the use of decision tree for classification purpose with an example.	6M	CO2	L1
	(b)	Write a note on Occam's razor and minimum description principal.	OIVI	COZ	22.
		(OR)	6M	CO2	L4
4.	(a)	Discuss Inductive Bias in Decision tree learning.		CO2	L3
	(b)	Construct Decision trees to represent the Boolean Functions: i) A && ~ B ii) A V [B && C] iii) A XOR B UNIT - III	6M	COZ	LS
		Draw the perceptron network with the notation. Derive an equation of	6M	CO3	L 4
5.	(a)	gradient descent rule to minimize the error.			
	(b)	Differentiate between Gradient Descent and Stochastic Gradient Descent.	6M	CO ₃	L2
	(2)	(OR)			
6.	(a)	Write an algorithm for back propagation algorithm which uses stochastic gradient descent method.	6M	CO3	L1
	(b)	Explain the appropriate problems for neural network learning.	6M	CO3	L2
	(~)	UNIT – IV			•
7.	(a)	What is the relationship between Bayes theorem and the problem of concept learning?	6M	CO4	L1
	(b)	Explain the EM Algorithm in detail.	6M	CO4	L2
	(~)	(OR)			
8.	(a)	Explain the Gradient search to maximize likelihood in a neural net.	6M	CO4	L2
0.	(b)	Explain Maximum Likelihood Hypothesis for predicting probabilities.	6M	CO4	L4
	(6)	UNIT-V			
9.	(a)	Explain with suitable example K-Nearest Neighbor Algorithm.	6 M	CO5	L2
·	(b)		6M	CO5	L4
	(0)	(OR)			
10.	(a)	and disadvantages of	6M	CO5	L1
10.	(a)	these methods.		- ندنم	
	(b)		6M	CO5	L4

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA

M. Tech. I Semester (R22PG) Regular End Examinations of March 2023

SUB: Artificial Intelligence (AI & DS)

Time: 3 Hours

Max. Marks: = 60

Answer any FIVE Questions choosing one question from each unit.

All questions carry Equal Marks.

				12*	5=60	
				Marks	CO	BL
			UNIT - I			
1.		What is an	agent? Explain different types of agents in artificial intelligence.	12M	CO1	L1
			(OR)			
2.		What is ra	tionality? Explain four approaches to AI in detail.	12M	CO1	L1
			UNIT – II			
3.	(a)	Explain g	eneric algorithm for simple problem-solving agent?	6M	CO2	L2
-	(b)	What is he suitable ex	euristic search? Explain any one of heuristic search strategy with	6M	CO2	L2
			(OR)			
4.	(a)	Explain th	ne problem formulation of 8-Puzzle problem.	6M	CO2	L2
	(b)	What is	blind search? Explain any one of blind search strategy with	6M	CO ₂	L2
	` '	suitable e	xample.			
			UNIT – III	12M	CO3	L2
5.		Explain i	n detail about issues in knowledge representation.	1,2114	005	
			(OR)	12M	CO3	L2
6.		Explain r	esolution algorithm for predicate logic with suitable example.	IMIT	000	
			UNIT – IV	12M	CO4	L3
7.		-	he following	12111	٠٠.	
		i)	Learning by parameter adjustment			
		ii) iii)	Learning with macro-operators Learning by Chunking			
		111)	(OR)			
8.	(a)	How dec	ision tree concept is useful in learning? Explain	6M	CO4	L3
٥.	(b)	Discuss i	in detail about Explanation based learning.	6M	CO4	L3
	(0)	Discussi	UNIT-V			
9.		Discuss	the following.	12M	CO5	L4
7.		i)	Expert system shells			
		ii)	MOLE			
		/	(OR)			
10.		Explain	the following algorithms	12M	CO5	L4
10.		i)	Page rank algorithm			
		ii)	HITS algorithm			
		,	-			

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular End Examinations of March/April-2023 SUB: Big Data Analytics (AI & DS)

Time: 3 Hours

Max. Marks: = 60

			Marks	СО	BL
		UNIT - I			
1.	Γ	Describe big data explain about analytic processes and Tools of big data?	12 M	CO1	L2
1.	-	(OR)			
2.	T	llustrate Intelligent data analysis with an example	12M	CO1	L3
4.	-	UNIT – II			
3.	I	Explain about the Cloud with Big Data and software as services BI	12M	CO2	L2
		(OR)			
4.]	Discuss about Rights and Responsibility of Data privacy and ethics in Big	12M	CO2	L2
		Data.			
		UNIT – III			
5.		Discuss in detail about File-Based Data Structures with suitable examples.	12M	CO3	L2
		(OR)			
6.		What is map reduce illustrate java map reduce with an example	12M	CO3	L2
		UNIT – IV			
7.		List major differences pig with other databases and explain them.	12M	CO4	L2
		(OR)			
8.	(a)	Discuss about expressions in pig with an example	6M	CO4	L2
0.	(b)	Illustrate with an example Schema relationship in pig.	6M	CO4	L3
	(5)	UNIT-V			
9.	(a)	List and explain about Hive Services	6M	CO5	L4
,	(b)		f 6M	CO5	L2
	(U)	Hive.			
		(OR)			
10.		Explain various steps involved in Building an online query applications	12M	CO	5 L2

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular End Examinations of March/April-2023 SUB: Data Visualization Techniques (AI & DS)

Time: 3 Hours

Max. Marks: = 60

			Marks	CO	\mathbf{BL}
		UNIT - I			
1.	(a)	Why Do Data Semantics and Types are required for Data Visualization? Explain	6M	C01	L1
	(b)	Explain the visualization pipeline.	6M	CO1	L3
		(OR)			
2.		Give a brief note on the Value of Visualization.	12M	CO1	L2
		UNIT – II			
3.		Explain plot () function is used to draw points (markers) in a R Programming.	12M	CO2	L3
		(OR)			
4.	(a)	Describe the Optimal visualization types.	6M	CO2	L3
	a.s	Fruiting to Coloniated Solds	6M	CO2	πo
	(b)	Explain the Calculated fields.	OIVE	COZ	<u>12</u>
		UNIT – III			
5.	(a)	Explain Channel Effectiveness with a suitable example.	6M	CO3	L3
	(b)	Illustrate Relative vs. Absolute Judgments.	6M	CO3	L4
	(-,				
		(OR)			
6.		List and explain the Validation Approaches.	12M	CO3	L3
		$\mathbf{UNIT} - \mathbf{IV}$,		
7.		Discuss in detail about ggplot library in R – layers	12M	CO4	L1
		(OR)			
8.		Explain the terms geoms, stats, positioning, and annotations.	12M	CO4	L4
		UNIT-V			
9.	(a)	Illustrate Textual data, Temporal data.	6M	CO5	L3
	(b)	What are the four key elements of dashboard reporting? Explain	6M	CO5	L1
		(OR)			
10.		List and explain the Dashboard design principles.	12M	CO5	L3

SET - 1

K.S.R.M. COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA M. Tech. I Semester (R22PG) Regular Examinations of March/April - 2023 SUB: Research Methodology & IPR (GTE, PS, ES&VLSI,RE, AI&DS)

Time: 3 Hours

Max. Marks: 60

		An questions carry Equality	Marks	CO	BL
			Iviai no		
		UNIT - I	6M	CO1	L2
1.	(a)	Explain the sources of research problem.	6M	-	L2
	(b)	What are the characteristics of good research problem.	OIAT	COI	
	()	(OR)	12M	CO1	L1
2.		What are the different types of data collection and explain the different	1.2171	COI	٠٠٠
4.		sources of data collection.			
		UNIT - II	12M	CO2	L 4
3.		What are the different approaches for effective literature approaches.			
		(OR)	6M	CO ₂	L2
4.	(a)	Explain how to write a good report.	6M	CO2	L2
	(b)	What are the formats of research proposals.			
		UNIT - III	6M	CO3	L2
5.	(a)	Explain the importance of research proposal and how to write research			
		proposal. Write the need and importance of Trade and Copyright in research.	6M	CO3	L2
	(b)	(OR)			
		Explain the procedure for grant of patents.	6M	CO3	L1
6.	(a)	Write a short note on international scenario on intellectual property.	6M	CO3	L1
	(b)	Write a short hole on international sociality of UNIT – IV			
		Define patent. Explain the various steps in filing the patent.	12M	CO4	L4
7.		Define patent. Explain the various steps in ming the property (OR)			
		Explain about licensing and transfer of technology in detail	12M	CO4	L2
8.		Explain about licensing and transfer of commercial UNIT-V			
		and the leaf quantum a	6M	COS	5 L2
9.	• •	Write a IPR of biological systems.	6M	COS	5 L1
	(b)	What are the importance of IPR and write its advantages. (OR)			
			12M	CO:	5 L3
10		With examples, explain about computer software patents			